a2 United States Patent

Moran et al.

US009438525B2

US 9,438,525 B2
Sep. 6, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(86)

87

(65)

(1)

(52)

(58)

SCHEDULING MODULE AND METHOD
THEREOF

Inventors: Robert Moran, Largs (GB); Rao
Karthik C Ganesh, Noida (IN); Robin
Paling, Bathgate (GB)

Assignee: FREESCALE SEMICONDUCTOR,
INC., Austin, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 99 days.

Appl. No.: 14/402,935

PCT Filed: Jun. 1, 2012

PCT No.: PCT/IB2012/052779

§ 371 (e)(D),

(2), (4) Date: Now. 21, 2014

PCT Pub. No.. W02013/179099
PCT Pub. Date: Dec. 5, 2013

Prior Publication Data

US 2015/0156128 Al Jun. 4, 2015

Int. C.

HO4L 12/863 (2013.01)

HO4L 29/02 (2006.01)

GO6F 13/38 (2006.01)

U.S. CL.

CPC oo, HO4L 47/50 (2013.01); GO6F 13/382

(2013.01)
Field of Classification Search
CPC ... HOAL 47/50; GOGF 13/14; GOG6F 13/38;
GOGF 13/382; GOGF 11/3051; GOG6F
2212/621; GOGF 2213/2416
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,805,922 A 9/1998 Sim et al.
5,933,611 A 8/1999 Shakkarwar
7,724,598 B1* 5/2010 Chan GOG6F 12/0292
326/38
7,764,614 B2 7/2010 Wang
7,991,296 Bl 8/2011 Johnston et al.
8,139,589 B2* 3/2012 Choi ..cocevvvvrevrnnnen HO4W 84/18
370/401
2004/0039866 Al 2/2004 Cheung
2004/0049623 Al 3/2004 Barnett
2007/0283067 Al* 12/2007 Patella GO6F 13/24
710/260
2008/0091848 Al* 4/2008 KuO ...coocevvvvrevrnrnnnn GO6F 13/385
710/6
2009/0113118 Al* 4/2009 Lee ..cccccocvvrvnrnnne. GOGF 12/0246
711/103
2010/0146157 Al 6/2010 Choi et al.

OTHER PUBLICATIONS

International Search Report and Written Opinion correlating to
PCT/IB2012/052779 dated Dec. 26, 2012.

* cited by examiner
Primary Examiner — Ahmed Elallam

(57) ABSTRACT

A scheduling module arranged to schedule the transmission
of data from a plurality of data sources over a serial
communication interface. The scheduling module comprises
a register array and is arranged to selectively couple one of
the data sources to the serial communication interface based
at least partly on a source identifier value stored within a
currently selected register within the register array. The
scheduling module is further arranged to select a next
sequential register within the register array upon receipt of
a trigger signal.

18 Claims, 4 Drawing Sheets

e SCHEDULER

8Pl Frame Data H

130

STCData

ek

\
(/
152 o

250

SPI Update

260

254
50C Signaly

Ext. Signal

256

140"

U.S. Patent Sep. 6, 2016 Sheet 1 of 4 US 9,438,525 B2

110
\ PROCESSING
CORE(S)
1154/’ | 150
154
y /} /

SPI FRAME DATA BUFFER

STC DATA BUFFER

7
(
152
y
SCHEDULER
140"
y
SERIAL COMMS
130~ | TX IFF
FIFO BUFFER
105~
RX I/F
<
<
»
TX IF
7
120 N
-
/ -
100 v
RX I/F
4
FIG. 1 <
] D [TTIXIF
120~

U.S. Patent

154

| SPI Frame Data I_l

Sep. 6, 2016

Sheet 2 of 4

SCHEDULER

| STC Data |_l

L
p

152 ~ /
250 l
; 282 242
274f§.,. / N
P 285
SPI Updat s 280
pdate
/ N\pg4
260 253 220 235
254
SOC Signal\
Ext. Signal
256
L [TS0_SRC |4
21 <{_[Ts1_sRC : I
i [TS2_SRC |4—ii s
i [TSn_SRC |+ &
140" | 210—/‘--------------'/

240

245

244

230

US 9,438,525 B2

130

/
_>| Serial Comm’s TX I/F |

FIG. 2

U.S. Patent Sep. 6, 2016 Sheet 3 of 4 US 9,438,525 B2

New SPI New SPI
Data Data

310
Trlgg\l Trigger Trlgger Trigger Trigger Trigger 330

1 : i :

1 1] |

\/ \/ \/

STC SPI STC SPI X STC STC
E TSO TS3 E
Time
S e
——
Tx Cycle
TS0 - STC
TS1 — SPI if available; else STC
TS2-STC
TS3 — SPI if available; else STC
New SPI
Data
410
Trigger Trigger Trigger Trigger Trigger
' : 420 ! ! ! 430
] 1 1 1]
] 1 1 1]
\/ \4 \/ \/ \/ /
(st 3—s1c X spl (s H——
E TSO TS1 TS2 TS3 E TS0 TS1
Time
N R
—
Tx Cycle

TS0 -STC
TS1 — SPI if available; else no Tx
TS2 -STC

TS3 — SPI if available; else no Tx

FIG. 4

U.S. Patent Sep. 6, 2016 Sheet 4 of 4 US 9,438,525 B2

500 510
~(START)

y

520\ INITIALISE TS_SRC REGISTER
ARRAY & TS_PTR

Y

y

530\ SELECT TS_SRC REGISTER
ACCORDING TO TS_PTR VALUE

SRC VALUE?

CONFIGURE SELECTION OF DATA SOURCE
ACCORDING TO SPI UPDATE SIGNAL

>

y

OPERABLY COUPLE SERIAL COMMS TX I/F TO

DATA SOURCE(S) ACCORDING TO VALUE OF | 960
CURRENT TR_SRC REGISTER

A 4

570

TRIGGER
EVENT?

580
N INCREMENT TS_PTR

FIG. 5

US 9,438,525 B2

1
SCHEDULING MODULE AND METHOD
THEREOF

FIELD OF THE INVENTION

The field of this invention relates to a scheduling module
and method therefor. In particular, the invention relates to a
scheduling module arranged to schedule the transmission of
data from a plurality of data sources over a serial commu-
nication interface.

BACKGROUND OF THE INVENTION

In the field of integrated circuit devices, for many modern
embedded applications there is a need for serialisation of
timer channels etc. in order to reduce the number of pins
required implement such timer channels between, say, a
microcontroller unit (MCU) of the embedded application
and external devices operably coupled thereto. For clarity,
such a timer channel may comprise, by way of example, a
timing control signal to an external hardware component
that generates input/output required to, say, switch at times
dependent on user configurations or the like. For example,
such a timer channel may comprise a single timing control
signal to an external hardware component arranged to gen-
erate a pulse-width modulated (PWM) output. Accordingly,
the scheduling of such timer channels is of importance in
order to ensure correct operation of the components reliant
thereon.

Serial peripheral interface (SPI) frames are often used to
send control data to the same external devices for which the
timer channels are required. As such, it is conventional for
SPI frames and timer channels to be transmitted over the
same communications channel, whereby SPI frames are
interleaved with the serialised timer channels.

A challenge faced by manufacturers of embedded semi-
conductor devices for use within such systems is that
different applications require unique rules for determining
when SPI frames may be interleaved within the serialised
timer channels, for example in order to avoid jitter of the
serialised timer channels. There is currently no common
standard approach to determining how such interleaving of
SPI frames within timer channels should be implemented.
As such, manufacturers of embedded semiconductor devices
for use within such systems are faced with different require-
ments from different customers in terms of controlling the
interleaving of SPI frames within the timer channels. It is
desirable, from a manufacturer’s point of view, to be able to
develop and manufacture a single integrated circuit (IC)
device that is capable of supporting the interleaving require-
ments of multiple customers for different applications.

For applications such as automotive applications, in
which high speed scheduling of the SPI frames and timer
channels being transmitted over a shared communications
channel is required, it is known to use hard state machines
to perform the required (high speed) scheduling and inter-
leaving. However, a problem with using hard state machines
in this manner is that they are typically limited to imple-
menting a particular interleaving rule set. Accordingly, in
order to enable support within a single IC device using such
hard state machines, it is necessary to provide multiple hard
state machines within the IC device. The inclusion of
multiple hard state machines undesirable increases the die
size of the IC device, and increases development time due to
the need for designing, testing and validating the multiple
hard state machines.

10

15

20

25

30

35

40

45

50

55

60

65

2

A software based implementation in which the scheduling
of the SPI frames and timer channel is performed by
software would enable a flexible implementation to be
provided. However, such an implementation would have a
significant impact on the processing performance of the
MCU, for example requiring up to 50% of the processing
capabilities of a 200 MHz processor to achieve a 1 ps
transmit period.

SUMMARY OF THE INVENTION

The present invention provides a scheduling module
arranged to schedule the transmission of data from a plu-
rality of data sources over a serial communication interface
and a method of scheduling the transmission of data from a
plurality of data sources over a serial communication inter-
face as described in the accompanying claims.

Specific embodiments of the invention are set forth in the
dependent claims.

These and other aspects of the invention will be apparent
from and elucidated with reference to the embodiments
described hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

Further details, aspects and embodiments of the invention
will be described, by way of example only, with reference to
the drawings. In the drawings, like reference numbers are
used to identify like or functionally similar elements. Ele-
ments in the figures are illustrated for simplicity and clarity
and have not necessarily been drawn to scale.

FIG. 1 illustrates a simplified block diagram of an
example of a part of a serial communication system.

FIG. 2 illustrates a simplified block diagram of an
example of a scheduling module.

FIGS. 3 and 4 illustrate simplified diagrams of examples
of scheduling of data from a plurality of data sources.

FIG. 5 illustrates a simplified flowchart of an example of
a method of scheduling the transmission of data from a
plurality of data sources over a serial communication inter-
face.

DETAILED DESCRIPTION

Example embodiments of the present invention will now
be described with reference to the accompanying drawings,
and in particular with reference to a scheduling module
forming part of a master device within the serial communi-
cation system. However, it will be appreciated that the
present invention is not limited to the specific illustrated
embodiments described herein, and may equally be applied
within any alternative serial communication system in which
data from multiple sources is required to be transmitted over
a serial communication interface. Furthermore, because the
illustrated embodiments of the present invention may for the
most part, be implemented using electronic components and
circuits known to those skilled in the art, details will not be
explained in any greater extent than that considered neces-
sary as illustrated below, for the understanding and appre-
ciation of the underlying concepts of the present invention
and in order not to obfuscate or distract from the teachings
of the present invention.

Referring first to FIG. 1, there is illustrated a simplified
block diagram of an example of a part of a serial commu-
nication system 100, such as may be implemented within,
say, an embedded digital application. In the illustrated
example, the serial communication system 100 comprises a

US 9,438,525 B2

3

master device 110, for example comprising one or more
processing cores 115 implemented within an integrated
circuit device 105, for example comprising at least one die
within a single integrated circuit package. The serial com-
munication system 100 further comprises one or more slave
devices 120 located external to the master device 110, and
operably coupled thereto by way of a serial communication
interface, a transmit component thereof within the master
device 110 being illustrated at 130.

The serial communication system 100 further comprises a
scheduling module 140 operably coupled to the transmit
component 130 of the serial communication interface, and
arranged to schedule the transmission of data there across. In
particular, the scheduling module 140 is arranged to sched-
ule the transmission of data from a plurality of data sources
150 within the master device 110 over the serial communi-
cation interface 130. For example, the scheduling module
140 may be arranged to schedule the transmission of timing
data from at least a first data source, such as serialised timer
channel (STC) data from an STC data buffer 152, and
command data from at least one further data source, such as
serial peripheral interface (SPI) data from an SPI frame data
buffer 154, over the serial communication interface 130.

In the illustrated example, the processing core(s) 115
is/are illustrated as being operably coupled to, and thus
capable of providing the data for, the data sources 150. It
will be appreciated that the data sources 150 are not limited
receiving data from such processing core(s) 115, and may
additionally/alternatively receive data provided by other
components. For example, data within the data sources 150
may be provided by other logic circuits within the master
device 110 (not shown), such as a DMA (direct memory
access) controller or the like, and/or by peripheral modules
(not shown) of the master device 110.

Referring now to FIG. 2, there is illustrated a simplified
block diagram of an example of the scheduling module 140.
The scheduling module 140 comprises a register array 210,
the register array comprising a plurality of programmable
registers 215; each register 215 being arranged to store
therein a source identifier value. In some examples, the
registers 215 may programmable by one or more of the
processing cores 115 illustrated in FIG. 1. The scheduling
module 140 is arranged to selectively couple one of a
plurality of data sources to the serial communication inter-
face 130 based at least partly on a source identifier value
stored within a currently selected register 215 within the
register array 210.

For example, in FIG. 2 the scheduling module 140
comprises a register pointer component 220 arranged to
store and output a register pointer value 225 corresponding
to a register 215 within the register array 210, and the
scheduling module 140 is arranged to selectively couple one
of a plurality of data sources to the serial communication
interface 130 based at least partly on a source identifier value
stored within a register 215 within the register array 210 to
which the register pointer value 225 corresponds. The sched-
uling module 140 in the example illustrated in FIG. 2 further
comprises a first multiplexer component 230 operably
coupled to the registers 215 within the register array 210 and
arranged to receive at inputs 232 thereof the source identifier
values stored within said registers 215. The first multiplexer
component 230 is further arranged to receive, at a control
input 234 thereof, the register pointer value 225 stored
within the register pointer component 220, and is arranged
to selectively output 235 one of the source identifier values
received thereby from the registers 215 in accordance with
the received register pointer value 225. In particular, the first

10

15

20

25

30

35

40

45

50

55

60

65

4

multiplexer component 230 is arranged to output 235 a
source identifier value stored within a register 215 corre-
sponding to the register pointer value 225 received thereby.

The scheduling module 140 in the example illustrated in
FIG. 2 further comprises a second multiplexer component
240 operably coupled to the plurality of data sources. In the
illustrated example, the plurality of data sources comprise
the STC data buffer 152 and the SPI frame data buffer 154
illustrated in FIG. 1, which are arranged to store therein STC
data and SPI frame data respectively for transmission over
the serial communication interface 130. In addition, the
plurality of data sources further comprises, in the illustrated
example, a ‘delay’ or ‘passive’ data source 250, illustrated in
FIG. 2 by way of a ‘0’ value. The delay/passive data source
250 provides null data to be transmitted when no STC data
or SPI frame data is required and/or desired to be transmitted
over the serial communication interface 130. Accordingly,
the second multiplexer component 240 is arranged to receive
at inputs 242 thereof data stored within the SPI frame data
buffer 154, data stored within the STC data buffer 152 and
the delay/passive data 250. The second multiplexer compo-
nent 230 is further arranged to receive, at a control input 244
thereof, the source identifier value 235 stored within the
‘currently selected’ register 215 of the register array 210
(e.g. the register 215 to which the register pointer value 225
corresponds), and output by the first multiplexer component
230. An output 245 of the second multiplexer component
240 is operably coupled to the serial communication inter-
face component 130. The second multiplexer component
240 is thus arranged to selectively output to the serial
communication interface component 130 data received from
one of the plurality of data sources 152, 154, 250 in
accordance with the source identifier value 235 stored within
the ‘currently selected’ register 215 and output by the first
multiplexer component 230.

In this manner, the scheduling module 140 is arranged to
selectively couple one of the data sources 152, 154, 250 to
the serial communication interface 130 based (at least
partly) on the source identifier value 235 stored within the
currently selected register 215 within the register array 210
(i.e. the register 215 corresponding to the register pointer
value 225). Thus, the scheduling of data from the plurality
of data sources 152, 154 to be transmitted over the serial
communication interface 130 is implemented through hard-
ware components, enabling high speed scheduling required
for application such as automotive applications, whilst also
enabling flexible configuration of the scheduling rules via
the use of the programmable registers 215 within the register
array 210, as described in greater detail below.

The scheduling module 140 is further arranged to select a
next sequential register 215 within the register array 210
upon receipt of a trigger signal. It will be appreciated that the
registers 215 may be selected in any suitable sequence.
However, for simplicity, the registers 215 within the register
array 210 in the illustrated example are selected in a linear,
cyclic sequence, as described in greater detail below. The
trigger signal may comprise any appropriate trigger signal.
For example, and as illustrated in FIG. 2, the trigger signal
may be implemented by way of a signal, such as the timer
signal 252. In this manner, a substantially periodic trigger
signal may be provided to the scheduling module 140,
thereby providing substantially consistent trigger intervals
between selecting next sequential registers 215. Such a
timing signal 252 may be generated by a timing circuit 253
provided within the scheduling module 140 (as illustrated in
FIG. 2), or alternatively may be generated by a timing circuit
located externally to the scheduling module 140. In other

US 9,438,525 B2

5

examples, other forms of trigger signal may additionally
and/or alternatively be implemented. For example, a trigger
signal 254 may be generated within a system-on-chip of
which the scheduling module 140 forms an integral part, for
example generated by one or more of the processing cores
115 illustrated in FIG. 1. Additionally and/or alternatively, a
trigger signal may comprise an external event trigger signal
256, for example generated external to the system-on-chip of
which the scheduling module 140 forms an integral part, for
example generated external to the master device 110 illus-
trated in FIG. 1.

In the example illustrated in FIG. 2, the scheduling
module 140 comprises an OR gate 250 arranged to receive
at inputs thereof each of the trigger signals 252, 254, 256. An
output 255 of the OR gate 250 is provided to the register
pointer component 210, which is arranged to increment the
register pointer value 225 stored therein upon receipt of a
trigger signal 255 output by the OR gate 250. In this manner,
the register pointer component 210 in the example illustrated
in FIG. 2 is arranged to increment the register pointer value
225 upon receipt of a trigger signal from any one of the
signals 252, 254, 256. Upon incrementing the register
pointer value 225 in this manner, the first multiplexer
component 230 will subsequently output the source identi-
fier value stored within the next register 215, in accordance
with the incremented register pointer value 225; this next
register thereby becoming the new ‘currently selected’ reg-
ister 215. Upon a change in the source identifier value output
by the first multiplexer component 230 following receipt of
a trigger signal in this manner, the second multiplexer
component 240 will be caused to selectively output to the
serial communication interface component 130 data
received from one of the plurality of data sources 152, 154,
250 in accordance with the new source identifier value 235
stored within the new ‘currently selected’ register 215.

Thus, in this manner, by incrementing the register pointer
value 225 upon receipt of a trigger signal, each register 215
within the register array 210 may be sequentially selected in
a linear manner. The register pointer component 220 may be
arranged to restrict the register pointer value 225 to, say, a
range of 0 to N-1, where N is the number of registers 215
within the register array 210, and to cause the register
pointer value 225 to wrap around back to 0 after reaching
N-1. In this manner, the continued incrementing of the
register pointer value 225 upon receipt of trigger signals will
cause the cyclic sequential selection of the registers 125.

Each register 215 may be considered as representing a
timeslot for the scheduling of data to be transmitted over the
serial communication interface component 130. As such, the
data source from which data is to be transmitted within each
timeslot may be configurably (and flexibly) defined by way
of the source identifier value stored within the respective
register 215. In some examples, it is contemplated that the
register pointer component 220 may be configurable to
restrict the register pointer value 225 to a range smaller than
that of 0 to N-1. In this manner, a cycle of less than N
timeslots may be configurable, for example M timeslots,
whereby only a subset of the registers 215 (i.e. the first M
registers 215 in the array 210) are cyclically sequentially
selected, and from which source identifier values are output
to the second multiplexer component 240.

In some examples, the registers 215 may be arranged to
comprise one or more source identifier values that directly
identify a particular data source, herein after referred to as
a static source identifier value. For example, such a static
source identifier value may directly identify one of the STC
data buffer 152, the SPI frame data buffer 154 or the

10

15

20

25

30

35

40

45

50

55

60

65

6

delay/passive data 250. Accordingly, upon receipt of such a
static source identifier value at its control input 244, the
second multiplexer component 240 is arranged to selectively
couple the corresponding data source to the serial commu-
nication interface component 130.

In some examples, the registers 215 may additionally/
alternatively be arranged to comprise one or more dynamic
source identifier values, wherein the selection of a data
source to be coupled to the serial communication interface
component 130 is further dependent on one or more condi-
tional signals. In this manner, the scheduling module 140
may be further arranged to selectively couple one of the data
sources to the serial communication interface further based
on at least one conditional signal, upon the source identifier
value stored within the currently selected register compris-
ing such a dynamic source identifier value. For example, and
as illustrated in FIG. 2, such a conditional signal may
comprise a command data update signal, such as the SPI
update signal illustrated at 260, which is arranged to indicate
when new/updated SPI data is available within the SPI
frame data buffer to be transmitted.

In the example illustrated in FIG. 2, the scheduling
module 140 comprises a third multiplexing component 270
comprising a data inputs 272 operably coupled to the SPI
frame data buffer 154 and the delay/passive data 250 respec-
tively, and a control input 274 operably coupled to the SPI
update signal 260. An output 275 of the third multiplexing
component 270 is operably coupled to an input 242 of the
second multiplexing component 240. In this manner, the
third multiplexing component 270 is arranged to output
either data stored within the SPI frame data buffer 154 or the
delay/passive data 250, depending on the value of the SPI
update signal 260, and to provide the respective data to the
second multiplexing component 240 as a dynamic data
source.

The scheduling module 140 in FIG. 2 further comprises a
fourth multiplexing component 280 comprising a data inputs
282 operably coupled to the STC data buffer 152 and the SPI
frame data buffer 154 respectively, and a control input 284
operably coupled to the SPI update signal 260. An output
285 of the fourth multiplexing component 280 is operably
coupled to an input 242 of the second multiplexing compo-
nent 240. In this manner, the fourth multiplexing component
280 is arranged to output either data stored within the STC
data buffer 152 or data stored within the SPI frame data
buffer 154, depending on the value of the SPI update signal
260, and to provide the respective data to the second
multiplexing component 240 as a further dynamic data
source.

In this manner, the scheduling module 140 in the illus-
trated example is arranged to selectively couple the SPI
frame data buffer 154 to the serial communication interface
component 130 upon the source identifier value within the
currently selected register 210 comprising the respective
dynamic source identifier value, and upon the command data
update signal indicating the availability of updated com-
mand data. Conversely, the scheduling module 140 illus-
trated in FIG. 2 is arranged to selectively couple the STC
data buffer 152 or the delay/passive data 250 to the serial
communication interface component 130 upon the source
identifier value within the currently selected register 210
comprising the respective dynamic source identifier value,
and upon the command data update signal indicating no
updated command data available.

Thus, the second multiplexer component 240 illustrated in
FIG. 2 is arranged to selectively output to the serial com-

US 9,438,525 B2

7

munication interface component 130 data received from one
of the ‘static’ data sources comprising:

the STC data buffer 152;

the SPI frame data buffer 154; and

the delay/passive data source 250,
or one of the ‘dynamic’ data sources comprising:

source=SPI frame data buffer 154 if SPI updated/new

available, else source=delay/passive data source 250
(as provided by the third multiplexing component 270);
and

source=SPI frame data buffer 154 if SPI updated/new

available, else source=STC data buffer 152 (as pro-
vided by the fourth multiplexing component 280).

Thus, in the illustrated example the registers 215 may
comprise source identifier values relating to these five data
source options. Accordingly, each source identifier value
comprise a three bit binary value.

Advantageously, the scheduling module 140 in the illus-
trated example enables up to N timeslots to be defined (N
being the number of registers 215 available within the
register array 210). Furthermore the scheduling module 140
enables a data source (either static or dynamic) to be
configurably defined for each timeslot by way of loading a
corresponding source identifier value into the respective
register 215.

FIG. 3 illustrates a simplified diagram of an example of a
transmission cycle in which the scheduling module 140 has
been configured to schedule the transmission of data accord-
ing to a first set of rules. In the example illustrated in FIG.
3, the scheduling module 140 has been configured to sched-
ule the transmission of data by way of transmission cycles
comprising four timeslots, TS0 to TS3. As described above,
the scheduling module 140 may be configured to implement
four timeslots by way of the register pointer component 220
being configured to restrict the register pointer value 225 to
a range of, say, 0 to 3.

The scheduling module 140 has further been configured to
transmit data according to the following set of rules:

In TS0—data from STC data buffer 152 to be transmitted;

In TS1—data from SPI frame data buffer 154 to be

transmitted if available (i.e. dependent on SPI Update
signal 260; else data from STC data buffer 152 to be
transmitted;

In TS2—data from STC data buffer 152 to be transmitted

In TS3—data from SPI frame data buffer 154 to be

transmitted if available (i.e. dependent on SPI Update
signal 260; else data from STC data buffer 152 to be
transmitted.

As described above, such rules may be implemented by
way of the appropriate static/dynamic source identifier val-
ues being loaded into the corresponding registers 215.

In this manner, and as illustrated in FIG. 3, in each of
timeslots TS0 and TS2 data from the STC data buffer 152 is
scheduled for transmission over the serial communication
interface 130. Conversely, in timeslots TS1 and TS3, when
the SPI Update signal 260 indicates that new SPI data is
available, such as illustrated at 310 and 320, data from the
SPI frame data buffer 154 is scheduled for transmission over
the serial communication interface 130. However, when no
new SPI data is available, data from the STC data buffer 152
is scheduled for transmission over the serial communication
interface 130 in timeslots TS1 and TS3, as illustrated at 330.

FIG. 4 illustrates a simplified diagram of an alternative
example of a transmission cycle in which the scheduling
module 140 has been configured to schedule the transmis-
sion of data according to a second set of rules. In the
example illustrated in FIG. 4, the scheduling module 140 has

10

20

25

40

45

8

again been configured to schedule the transmission of data
by way of transmission cycles comprising four timeslots,
TS0 to TS3, for example by way of the register pointer
component 220 being configured to restrict the register
pointer value 225 to a range of, say, 0 to 3.

In the example illustrated in FIG. 4, the scheduling
module 140 has further been configured to transmit data
according to the following set of rules:

In TS0—data from STC data buffer 152 to be transmitted;

In TS1—data from SPI frame data buffer 154 to be

transmitted if available (i.e. dependent on SPI Update
signal 260; else no data is to be transmitted;

In TS2—data from STC data buffer 152 to be transmitted;

In TS3—data from SPI frame data buffer 154 to be

transmitted if available (i.e. dependent on SPI Update
signal 260; else no data is to be transmitted.

As described above, such rules may be implemented by
way of the appropriate static/dynamic source identifier val-
ues being loaded into the corresponding registers 215.

In this manner, and as illustrated in FIG. 3, in each of
timeslots TS0 and TS2 data from the STC data buffer 152 is
scheduled for transmission over the serial communication
interface 130. Conversely, in timeslots TS1 and TS3, when
the SPI Update signal 260 indicates that new SPI data is
available, such as illustrated at 410, data from the SPI frame
data buffer 154 is scheduled for transmission over the serial
communication interface 130. However, when no new SPI
data is available, no data is scheduled for transmission over
the serial communication interface 130 in timeslots TS1 and
TS3, as illustrated at 420 and 430 (i.e. in the example
illustrated in FIG. 2, the delay/passive data source 250
providing null data is operably coupled to the serial com-
munication interface 130 for those timeslots).

Thus, the scheduling module 140 in the illustrated
example provides a hardware solution for the configurable
and flexible high speed scheduling of the SPI frames and
serialized timer channels being transmitted over a shared
communications channel. Significantly, such a configurable
and flexible hardware solution enables different require-
ments from different customers to be supported through a
single hard state machine comprising the scheduling module
140 herein described, thereby reducing the die size and
development time as compared to conventional solutions
comprising multiple hard state machines.

Referring now to FIG. 5, there is illustrated a simplified
flowchart 500 of an example of a method of scheduling the
transmission of data from a plurality of data sources over a
serial communication interface, such as may be imple-
mented by way of a hard state machine such as the sched-
uling module 140 of FIG. 2. The method starts at 510, and
moves on to 520 where an array of data source identifier
registers, such as the array 210 of registers 215 of FIG. 2,
and a register point value (TS_PTR), such as the register
pointer value 225 of FIG. 2, are initialised. For example,
such initialisation may comprising loading data source iden-
tifier values into the registers 215 in accordance with sched-
uling rules to be implemented, as well as resetting the
register pointer value 225 to, say, ‘0’ and configuring its
range according to a required number of timeslots over
which data is to be scheduled.

Next, at 530, a register within the initialised array of
registers is selected according to the register point value.
The method then moves on to 540 where, if the selected
register comprises a dynamic source identifier value, a data
source is configured to be coupled to the serial communi-
cation interface according to one or more conditional signals
at 550, for example in response to a command data update

US 9,438,525 B2

9

signal, such as the SPI update signal 260 of FIG. 2. Next, at
560, the serial communication interface, for example in the
form of the serial communication interface component 130
of FIG. 2, is then selectively coupled to a particular data
source according to the source identifier value stored within
the selected register (and one or more conditional signals
where the selected register comprises a dynamic source
identifier value), for example as described above in relation
to FIG. 2.

The method then waits, at 570, for a trigger signal, upon
receipt of which the method moves on to 580, where the
register point value is incremented. The method then loops
back to 530, where the next sequential register is selected.

In the foregoing specification, the invention has been
described with reference to specific examples of embodi-
ments of the invention. It will, however, be evident that
various modifications and changes may be made therein
without departing from the broader spirit and scope of the
invention as set forth in the appended claims.

The connections as discussed herein may be any type of
connection suitable to transfer signals from or to the respec-
tive nodes, units or devices, for example via intermediate
devices. Accordingly, unless implied or stated otherwise, the
connections may for example be direct connections or
indirect connections. The connections may be illustrated or
described in reference to being a single connection, a
plurality of connections, unidirectional connections, or bidi-
rectional connections. However, different embodiments may
vary the implementation of the connections. For example,
separate unidirectional connections may be used rather than
bidirectional connections and vice versa. Also, plurality of
connections may be replaced with a single connection that
transfers multiple signals serially or in a time multiplexed
manner. Likewise, single connections carrying multiple sig-
nals may be separated out into various different connections
carrying subsets of these signals. Therefore, many options
exist for transferring signals.

Although specific conductivity types or polarity of poten-
tials have been described in the examples, it will be appre-
ciated that conductivity types and polarities of potentials
may be reversed.

Each signal described herein may be designed as positive
or negative logic. In the case of a negative logic signal, the
signal is active low where the logically true state corre-
sponds to a logic level zero. In the case of a positive logic
signal, the signal is active high where the logically true state
corresponds to a logic level one. Note that any of the signals
described herein can be designed as either negative or
positive logic signals. Therefore, in alternate embodiments,
those signals described as positive logic signals may be
implemented as negative logic signals, and those signals
described as negative logic signals may be implemented as
positive logic signals.

Furthermore, the terms ‘assert’ or ‘set’ and ‘negate’ (or
‘de-assert’ or ‘clear’) are used herein when referring to the
rendering of a signal, status bit, or similar apparatus into its
logically true or logically false state, respectively. If the
logically true state is a logic level one, the logically false
state is a logic level zero. And if the logically true state is a
logic level zero, the logically false state is a logic level one.

Those skilled in the art will recognize that the boundaries
between logic blocks are merely illustrative and that alter-
native embodiments may merge logic blocks or circuit
elements or impose an alternate decomposition of function-
ality upon various logic blocks or circuit elements. Thus, it
is to be understood that the architectures depicted herein are
merely exemplary, and that in fact many other architectures

10

15

20

25

30

35

40

45

50

55

65

10

can be implemented which achieve the same functionality.
For example, the scheduling module 140 in the illustrated
example has been illustrated and described as comprising a
functional component distinct from the serial communica-
tions interface component 130. However, it will be appre-
ciated that the scheduling module 140 may equally be
implemented as an integral part of such a serial communi-
cations interface component 130.

Any arrangement of components to achieve the same
functionality is effectively ‘associated’ such that the desired
functionality is achieved. Hence, any two components
herein combined to achieve a particular functionality can be
seen as ‘associated with’ each other such that the desired
functionality is achieved, irrespective of architectures or
intermediary components. Likewise, any two components so
associated can also be viewed as being ‘operably con-
nected,” or ‘operably coupled,’ to each other to achieve the
desired functionality.

Furthermore, those skilled in the art will recognize that
boundaries between the above described operations merely
illustrative. The multiple operations may be combined into
a single operation, a single operation may be distributed in
additional operations and operations may be executed at
least partially overlapping in time. Moreover, alternative
embodiments may include multiple instances of a particular
operation, and the order of operations may be altered in
various other embodiments.

However, other modifications, variations and alternatives
are also possible. The specifications and drawings are,
accordingly, to be regarded in an illustrative rather than in a
restrictive sense.

In the claims, any reference signs placed between paren-
theses shall not be construed as limiting the claim. The word
‘comprising” does not exclude the presence of other ele-
ments or steps then those listed in a claim. Furthermore, the
terms ‘a’ or ‘an,” as used herein, are defined as one or more
than one. Also, the use of introductory phrases such as ‘at
least one’ and ‘one or more’ in the claims should not be
construed to imply that the introduction of another claim
element by the indefinite articles ‘a’ or ‘an’ limits any
particular claim containing such introduced claim element to
inventions containing only one such element, even when the
same claim includes the introductory phrases ‘one or more’
or ‘at least one’ and indefinite articles such as ‘a’ or ‘an.” The
same holds true for the use of definite articles. Unless stated
otherwise, terms such as ‘first’ and ‘second’ are used to
arbitrarily distinguish between the elements such terms
describe. Thus, these terms are not necessarily intended to
indicate temporal or other prioritization of such elements.
Furthermore, the mere fact that certain measures are recited
in mutually different claims does not indicate that a combi-
nation of these measures cannot be used to advantage.

The invention claimed is:

1. A scheduling module for scheduling transmission of
data from a plurality of data sources over a serial commu-
nication interface, the scheduling module comprising:

a register array, wherein the scheduling module is

arranged to

selectively couple one of the data sources to the serial
communication interface based at least partly on a
source identifier value stored within a currently
selected register within the register array, and

select a next sequential register within the register array
upon receipt of a trigger signal.

2. The scheduling module of claim 1, wherein the sched-
uling module comprises:

US 9,438,525 B2

11

a register pointer component arranged to store and output
a register pointer value corresponding to a register
within the register array, wherein the scheduling mod-
ule is arranged to selectively couple one of the data
sources to the serial communication interface based at
least partly on a source identifier value stored within a
register within the register array to which the register
pointer value corresponds.

3. The scheduling module of claim 2, wherein the register
pointer component is arranged to increment the register
pointer value upon receipt of the trigger signal.

4. The scheduling module of claim 1, wherein the sched-
uling module is arranged to schedule the transmission of
data from a plurality of data sources comprising at least one
from a group of:

timing data source;

command data source; and

delay and/or passive data source.

5. The scheduling module of claim 1, wherein the sched-
uling module is further arranged to selectively couple one of
the data sources to the serial communication interface fur-
ther based on at least one conditional signal, upon the source
identifier value stored within the currently selected register
comprising a dynamic source identifier value.

6. The scheduling module of claim 5, wherein the at least
one conditional signal comprises a command data update
signal.

7. The scheduling module of claim 6, where the sched-
uling module is arranged to selectively couple a command
data source to the serial communication interface upon the
source identifier value within the currently selected register
comprising a dynamic source identifier value, and upon the
command data update signal indicating the availability of
updated command data.

8. The scheduling module of claim 7, wherein the sched-
uling module is arranged to selectively couple one of:

a timing data source; and

delay/passive data source,
to the serial communication interface upon the source iden-
tifier value within the currently selected register comprising
a dynamic source identifier value, and upon the command
data update signal indicating no updated command data
available.

9. The scheduling module of claim 1, wherein the trigger
signal comprises at least one from a group comprising at
least one of:

a timer signal;

an internal event trigger signal generated within a system-

on-chip of which the scheduling module forms an
integral part; and

an external event trigger signal.

5

10

20

25

30

35

40

45

12

10. The scheduling module of claim 1 implemented
within an integrated circuit device comprising at least one
die within a single integrated circuit package.

11. A serial communication system comprising the sched-
uling module of claim 1.

12. A method of scheduling the transmission of data from
a plurality of data sources over a serial communication
interface, the method comprising:

selectively coupling one of the data sources to the serial

communication interface based at least partly on a
source identifier value stored within a currently
selected register within a register array; and

selecting a next sequential register within the register

array upon receipt of a trigger signal.

13. The method of claim 12, wherein the plurality of data
sources comprises at least one from a group of:

timing data source;

command data source; and

delay/passive data source.

14. The method of claim 12, wherein the method further
comprises selectively coupling one of the data sources to the
serial communication interface further based on at least one
conditional signal, upon the source identifier value stored
within the currently selected register comprising a dynamic
source identifier value.

15. The method of claim 14, wherein the at least one
conditional signal comprises a command data update signal.

16. The method of claim 15, where the method further
comprises selectively coupling a command data source to
the serial communication interface upon the source identifier
value within the currently selected register comprising a
dynamic source identifier value, and upon the command data
update signal indicating the availability of updated com-
mand data.

17. The method of claim 16, wherein the method further
comprises:

selectively coupling one of a timing data source, and

delay and/or passive data source to the serial commu-
nication interface upon the source identifier value
within the currently selected register comprising a
dynamic source identifier value; and

indicating no updated command data available, upon the

command data update signal.

18. The method of claim 12, wherein the trigger signal
comprises at least one from a group of:

a timer signal;

an internal event trigger signal generated within a system-

on-chip of which the scheduling module forms an
integral part; and

an external event trigger signal.

#* #* #* #* #*

